Manual of the gene flow model program

11. How to run the program

72. Program structure

102.1 Function of FlyFromCircularSource

122.2 Function of Load3DData

142.3 The function of OpenGLRendering

203 How to adjust program parameters

203.1 Model precision

203.2 Settling speed

203.3 Source, buffer, receptor plant characteristics

203.4 Detection surface width and sphere radius

21References

21Project Source Codes Location:

 1. How to run the program

The GeneFlow.exe is the program to predict the gene flow. When run the program,

first it shows a window.

[image: image1.png]n Document1]
[27 Prediction Fie Vew Window Help BEIE

D-FH S 2

Welcome to predict gene flow !

Click on the Prediction menu,

 [image: image2.png][EE TN Fie View Window Help L,

5 o[l

o
x

Welcome to predict gene flow !

Click the Gene Flow button,

[image: image3.png]

Choose the desired source species and fill out the radius. In the program the sweet corn was set height of 1.5 m and grain corn 2.83 m. The measured leaf area densities were used.

[image: image4.png]-

Choose the desired buffer species and fill out the radius. The radius is from the source center.

The bare ground is set to 0 LAI.

The wheat leaf characteristics were from Aylor and Ferrandino (1989) experiment in Flesh and Donald (2000). See the file of “Aylor1989WheatExperimentLAI.txt”. The format is:

1sr row: Total layer of canopy, each layer height (m).

2nd row:

LN LAD
Fx
Fz
LD
SAD
Fx
Fz
SD

They represent layer number, leaf area density (m2/m3), Horizontal fractions of LAD, vertical fractions of LAD, leaf characteristic dimension (m), stem area density (m2/m3), Horizontal fractions of SAD, vertical fractions of SAD, stem characteristic dimension (m).

3rd – end rows:

Each row each item in order is layer number, leaf area density (m2/m3), Horizontal fractions of LAD, vertical fractions of LAD, leaf characteristic dimension (m), stem area density (m2/m3), Horizontal fractions of SAD, vertical fractions of SAD, stem characteristic dimension (m).

The sorghum leaf characteristics used 8419 W data. The 5 m plants were divided to 8 layers and each layer used the corresponding 8419 W leaf characteristic data. The data inputs are embedded in the program.

[image: image5.png]

Choose the desired receptor species and fill out the radius. The radius is from the source center. The receptor plants include sweet and grain corn which used the measured plant characteristics of sweet and 8419W corn.

[image: image6.png](%9 Prediction File view window Help

D-FH S 2

Ready

['[@ Microsoft po.

Load the Weather Data File

Lookin: |3 Sample Folder ~|

Aylor1989WheatExperimentLAL txt
Grain Corn Source Strength.txt
‘Sweet Corn Source Strength.txt

File name:

Files oftype

SampleWeatherDataF orModel bt

[Weather Data Files (")

Then input the weather data file.

The weather data file should be in the file directory with the files of “Sweet Corn Source Strength.txt”, “Grain Corn Source Strength.txt”, and “Aylor1989WheatExperimentLAI.txt”. So the program can find the needed source strength and the wheat leaf characteristics.

The sample weather file is the “SampleWeatherDataForModel.txt”. The items in order in each row in the file are:

day, time, precipitation (mm), radiation (w/m2), air temperature ((C), wind speed (m/s), and wind direction (().

The format for source strength is as the follows:

day, start time, end time, source strength (grains/m2/s)

[image: image7.png](%9 Prediction File view window Help
D-FH S 2

Save Dispersion Output-File Dialog

Savein: | Output |

File name: 'SampleDispersionOutput b

Saveastype: [OutputFiles (*ta)

Ready I

Then give the dispersion output file name. This file stores the outputs of dispersion and deposition.

See the “SampleDispersionOutput.txt”.

The format is as the follows:

During each 15-min,

1st row:

Day, time, u star (m/s), wind direction ((), Obukhov Length (m), source radius (m), source plant height (m), buffer radius (m), buffer plant height (m), receptor radius (m), receptor plant height (m).

2nd row on:

polar radius (m), angle from north direction (clockwise is positive, north is 0(), x-coordinate (0 at source center, south direction points to positive direction), y-coordinate, height, deposition flux density (grains/m2/s), accumulated deposition flux (grains/m2), concentration (grains/m3).

[image: image8.png](%9 Prediction File view window Help
D-FH S 2

Save Outcrossing Output-File Dialog

Savein: | Output |

) SampleDispersionOutput.txt

File name: SampleOutcrossingOutputixt

Saveastype: [OutputFiles (*ta)

Ready I

Then give the file name of outcrossing ratio output.

The formats for the file are as the follows:

polar radius (m), angle from north direction (clockwise is positive, north is 0(), x-coordinate (0 at source center, south direction points to positive direction), y-coordinate, outcrossing ratio.

[image: image9.png][27 Prediction Fie Vew Window Help BEIE
D-FH S 2

Domain 453.75

(m) Mean Wind Direction Concentration 27208
Source |8 5 (Grains/n3) 162,99
Bufer g o o1
Recepor[5 [15 2932
Weaper 382
Wind Speed (m/s) (121751 1.72
Direction (degree) [343537 8:86
Temperature (C) [21722

]

Radiation (watym2) [707 59 78 98 m
Precipitation (mm) [0 _

- Concentration (grains/m3)

Day[z Time [1300 Silk-height Deposition Total Deposition at Silk
(Grains/cm2) (Grains/cm2)
r(m)[s 18 |28 |38
h(m) Concentration T N 6.3 6.3
075 [453.7:[22.031[4. 781 [3.793¢ 4188 4188
15 [453.7¢[31.26¢ 5.646¢ | 3.602¢ 3-32 3-32
25 [137.70[34.12:[11.762[44571 212 212
35 [119.9%(24.64Z[9517:[5.282¢ A 152 LA 15
t[5025: 997 997
55 [13.86¢10.91¢ [8.025; [3333¢ 9-32 9-32
75 |3908: 7584248872 3.181(038 038
018 018
115 [1.376¢[2,638(0,682 0.788¢ 0 00 0100
“ _l_l © 2039597898 m
=2 30 | ¥ Color T

(x] GLDemo - Micro. [* 4 Notepad

Then for every 15-min simulation, show the outputs once.

2. Program structure

The program used VC++ 6.0 environment. For graphs, the OpenGL classes were used. The following graph shows the general structure.

[image: image10.wmf]Gene flow

program

Simulation

codes

OpenGL

Classes

Figure 2.1. The general structure of the model.

The 3D random-walk simulation codes are in the file of “ChildFrm.cpp”.

The program starts from function of

void CChildFrame::OnPredictionAperiod()

The flowchart for the function is:

[image: image11.wmf]Start

Input the

locations of the

weatehr file

Initilize the

canopy

characteristics

Get the windos

for showing the

outputs

Open source

strength file

Creat the

dispersion

and

outcrossing

output files

Input source,

buffer, and

receptor

characteristics

Seed the

random-number

generator

Initilize the

updated

deposition to

0's

Initilize the

accumulated

deposition to

0's

Run the

simulations

MyThreadProc

End

Figure 2.2. The flowchart for “void CChildFrame::OnPredictionAperiod()”

In above flowchart, “MyThreadProc” is a thread procedure which runs the function of “CalculationOfDispersion1()” which does the simulations.

The flowchart for “CalculationOfDispersion1()” is as the follows:

[image: image12.wmf]Start

Save the time,

domain,

weather

information

Prepare the

data for graph

show

To grid the

data for show

by the

function of

Load3DData

Do simulations in 15-min by

the function of

FlyFromCircularSource(Sou

rceRadius,IfFinalResult)

Input weather

data and source

strength

Show graphs

by using Invalidate and

UpdateWindow

functions which

activate the OnDraw

function in

GLDemoView.cpp

End

Silking seson

ends?

N

Calculate outcrossing

ratios and save them

Y

Figure 2.3. The flowchart for “CalculationOfDispersion1()”.

In above flowchart the function of “void FlyFromCircularSource(float SourceRadius, BOOL IfFinalResult)” in the file of “ChildFrm.cpp” does the simulations. SourceRadius is the radius of the source. IfFinalResult is a Boolean variable which is set to “TRUE” to save the simulation results.

The function of “void CGLDemoView::Load3DData(char type, DispersalArg Dispersal)” is in the file of “GLDemoView.cpp”. The function transfers and grids the data for graph show. The data is stored in “Dispersal”. The variable “type” is set to “C” for correct graph show type.

The OnDraw function draws the simulation graphs by functions of “OpenGLRendering()” and “Show3DForm(Dispersal1)”. Dispersal1 stores the shown data.

2.1 Function of FlyFromCircularSource

The following flowchart shows the function of “FlyFromCircularSource”.

[image: image13.wmf]Start

r

=

r

+increment;

for each subarea, the function of

OneCircularSourceGridFly(Sour

ceGridArea) calculates the

residence time and deposition

accumulator

Initialize

r

SourceGridArea=3.14

the function of

OneCircularSourceGridFly(

SourceGridArea) to

calculate the residence time

and deposition accumulator

for the first sub-area

Initialize

residence time

and deposition

accumulator

End

Calculate concentrtion,

deposition flux density,

and accumulated

deposition flux

Y

r

>source

radius?

2

r

N

Figure 2.4. The flowchart for “void FlyFromCircularSource(float SourceRadius, BOOL IfFinalResult)”.

The function of “OneCircularSourceGridFly(float SourceGridArea)” calculates the residence time and deposition accumulator. Where the SourceGridArea is the subsector area where the particles were released.

The flowchart for “OneCircularSourceGridFly” is as the follows:

[image: image14.wmf]Start

i=i+1

Calculate wind

velocity

Initialize the

particle

coordinates

End

Y

i>Np?

N

i=0

Simulation

time<0?

N

Calculate

displacements

dx, dy, dz

Calculate the

coordinates x,

y, z

Transfer the

current

coordinates to

the original

coordinates (x

axis points to

south)

Get the

coordinates of

the detection

sphere closest

to the particle

if the particle

flies in the

sphere,

calculate the

residence time

if the particle

flies in other 7

detection

spheres close to

the paticle,

calculate the

residence time

if the particle

deposits on the

detection

surfaces,

calculate the

deposition

accumulator

Judge which

plot the particle

is in and load

the LAD data

for this plot

calculate if the

particle

deposits on the

ground and

plants.

Calculate wind

velocities for

next time step

Y

Figure 2.5. The flowchart for “OneCircularSourceGridFly”

For calculating the concentration, the detection spheres were set.

In calculating the intersections of the line of a particle flight segment and the detection sphere. The following function was used:

sphere_line_intersection (

 XBeforeOriCor, YBeforeOriCor , ZBefore,

 xOriCor, yOriCor, z,

 XCylinderCenter , YCylinderCenter, ZforIntersection,

 HalfDetectorWidth)

Where XBeforeOriCor, YBeforeOriCor , ZBefore are coordinates of the start point before the flight; xOriCor, yOriCor, z are the coordinates of the end point after the flight; XCylinderCenter , YCylinderCenter, ZforIntersection are the coordinates of the center of the sphere. HalfDetectorWidth is the radius of th esphere. See the details in the function.

The following function judges if the flight start and end points are in the sphere so that the residence time can be calculated. The parameters were explained in the above function.

ifPointsIn(XBeforeOriCor , YBeforeOriCor , ZBefore, xOriCor , yOriCor , z ,

 XCylinderCenter , YCylinderCenter , ZforIntersection, HalfDetectorWidth);

The following function calculates the distance between two points for future residence time calculation.

Distance(XBeforeOriCor,float YBeforeOriCor, ZBefore, x, y, z);

The following function judges if the two flight points are in the sphere.

JudgeIfsegmentIntersected(XBeforeOriCor , YBeforeOriCor , Zbefor, xOriCor , yOriCor , z , XCylinderCenter , YCylinderCenter , ZforIntersection, HalfDetectorWidth);

For the deposition calculation, the intersection of the flight line with the surface of detection height was first calculated. Then judge if the flight intersected with the closest surface.

The equilibrium wind calculations are in functions of “void SourceFieldEquilibriumWind()”, “void ReceptorFieldEquilibriumWind()”, and ”void OtherCanopyFieldEquilibriumWind()” in the file of “ChildFrm.cpp”.

2.2 Function of Load3DData

The function of “void CGLDemoView::Load3DData(char type, DispersalArg Dispersal)” is in the GLDemoView.cpp”. The function transfers and grids the data for graph show. Where the Dispersal is a structure which stores the simulation results. The “type” is a parameter which was set to “C” for showing the graph.

Then, this function calls the function ”void COpenGL3D::Load3DData(char type,DispersalArg& Dispersal)” in the file of “OpenGL3D.cpp”. Then the function of “Load3DMultipleMapsData(type, Dispersal)” was called which in fact does the gridding and data transferring. See the following flowchart.

[image: image15.wmf]Start

Load the

gridded data to

pointer array

Grid the

simulation data

End

Init3DDataSet

Normalization

m_pDS points

to the graph

pointer array

Figure 2.6. The flowchart of the function of “Load3DmultipleMapsData”.

To grid the simulation data, Structure ScatData was used for defining the arrays storing the simulation data. The structure of SurfaceGrid was used to define the arrays which store the future gridded data. The function of “SetNext” sets the simulated data in arrays for future gridding. The function of “Xpand” does the gridding work. The structures and the two functions were adapted from W. John Coulthard. Details are in files of Xpand.cpp, surfacegrid.cpp, and scatdata.cpp.

“Init3DdataSet” function is in the file of “OpenGL3D.cpp”. The function initilize the parameters for the future graph show. The function of “Normalisation” in the file of “OpenGL3D.cpp” is for normalizing the data for future graph show. Finally, the m_pDS pointer points to the normalized arrays and the future graph show function will use the data the pointer points to.

2.3 The function of OpenGLRendering

The OnDraw function draws the simulation graphs by functions of “OpenGLRendering()” and “Show3DForm(Dispersal1)”.

The function “OpenGLRendering()” is in the “GLDemoView.cpp”. The function calls the “void COpenGL::OpenGLRendering()” in the file of “OpenGL.cpp”. The following flowchart shows the function structure.

[image: image16.wmf]

Start

Draw the

graphs by

OpenGLDraw

Map()

Set background

End

Exists simulation

results?

Y

N

Draw background by

OpenGLDrawBanner()

GDIDrawBanner()

Figure 2.7. The flowchart of “void COpenGL::OpenGLRendering()”.

In above flowchart, “OpenGLDrawbanner()”and “GDIGLDrawbanner()” draw the background graph which is in “OpenGL3D.cpp”. The two functions are in the file of “OpenGL3D.cpp”.

In above flowchart, the “OpenGLDrawMap()” draws the simulation graphs which is in “OpenGL3D.cpp”.

The following shows the flowchart for this function.

[image: image17.wmf]Start

Set the new

settings for

graphs

save the current

drawing setup

End

Draw the scales,

circles, wind direction

for the graphs by

"DrawAxis():

Draw the current

deposition flux graph

by "DrawFlat()"

Draw the current

deposition flux legend

by "DrawLegend()"

Draw the accumulated

deposition flux graph

by "Draw2ndFlat()"

Draw the accumulated

deposition flux legend

by "DrawLegend()"

Draw the concentration

legend by

"DrawLegend()"

Draw the concentration

graph by

"DrawConcentrationFlat()"

Restore the original

drawing setup

 Figure 2.8. The flowchart of “OpenGLDrawMap()”.

In above flowchart, the function “DrawAxis()” in the file of “OpenGL.cpp” draws the scales, field circles, and wind direction for the graphs. The flowchart for the function is:

[image: image18.wmf]Start

Set the new

settings for

graphs

Save the current

drawing setup

End

Draw the source square

for concentration graph

Draw the buffer square

for concentration graph

Draw the receptor

square for

concentration graph

Draw horizontal scale

for concentration graph

Draw vertical scale for

concentration graph

Draw division line

between concentration

and deposition graphs

Draw the concentration

graph title

Draw deposition titles and

north directions

Draw scales for deposition

graphs

Draw scales for deposition

graphs

Draw circles for deposition

graphs

Figure 2.9. The flowchart of “DrawAxis()”.

In flowchart of Figure 2.8, the function of “DrawFlat()” defined in “OpenGL3D.cpp” draws the current deposition flux graph.

The flowchart for the function as the following.

[image: image19.wmf]Start

j=0

Load the

normalized

current

deposition flux

End

j>the maximum

column No?

N

i=0

i>the maximum

row No?

N

the data point and 3

neighbor points in

receptor

Y

Draw the point and the

3 neighbor points

i++

j++

Figure 2.10. The flowchart of “DrawFlat()”.

In flowchart of Figure 2.8, the function of “Draw2ndFlat()” and “DrawConcentrationFlat()” defined in “OpenGL3D.cpp” draw the accumulated deposition flux and concentration graphs. The function structures are similar to the function of “DrawFlat()”.

In flowchart of Figure 2.8, the function of “DrawLegend()” defined in “OpenGL.cpp” draws the legends for the graphs. The flowchart is as the following.

[image: image20.wmf]

Start

Set new

settings

Save the current

drawing settings

End

Show the

legend values

by "Legend(rt)"

function

Restore the saved

drawing settings

Draw the

legend square

Figure 2.11. The flowchart of “DrawLegend()”.

In above flowchart the function “Legend(rt)” defined in “OpenGL3D.cpp” draws the values of the legend. The following shows the flowchart for this function.

[image: image21.wmf]Start

i=0

Initialize the

minimum

legend

value

End

Set the color

for current

legend square

Draw the legend

square

i<legend color

level?

Y

Set the color

for current

legend square

border

Draw current

legend square

border

Draw the value of

the legend shows

i++

N

Figure 2.12. The flowchart of “Legend”.

3 How to adjust program parameters

3.1 Model precision

The released particle number (Np) and the source subsector number ” in the file of “ChildFrm.cpp” control the procision of the output. Subsectror number is divided radially by “SegmentNo” and angularly by “AngleDivision” in the codes. For better precision, choose bigger Np, SegmentNo, and AngleDivision. But the running time will be longer. In this program, Np is set to 200 for source radius<=50 m, 80 for bigger radius.

The AngleDivision and SegmentNo were set in terms of source radius, i.e.

AngleDivision=72*(SourceRadius/8);

SegmentNo=60*(SourceRadius/8);

3.2 Settling speed

The pollen settling speed can be adjusted by the sentence of “SettlingSpeed=” in the file of “ChildFrm.cpp”. In the codes, “SettlingSpeed” is set to 0.31.

3.3 Source, buffer, receptor plant characteristics

The heights of source and receptor plants are set to 1.5 m for sweet corn and 2.83 m for grain corn in function of “void SetUpCanopy()” in the file of “ChildFrm.cpp”. The heights can be adjusted by sentences of “ReceptorFieldHeight=” or “SourceFieldHeight=”.

The density of the plants are set also in the function. The density for sweet corn is set to 53386 plants/ha and for grain corn 71187 plants/ha. It can be adjusted by sentence of “SourceFieldDensity=”.

Wheat buffer plant characteristics were set to data in the file of “Aylor1989WheatExperimentLAI.txt”. The format details are in the fourth step “input buffer” in section 1 “How to run the program”. Other plant characteristics please refer to the fourth step also. To adjust the characteristics, please go to the part of “PlantTypeIndex==” in file of “ChildFrm.cpp”.
3.4 Detection surface width and sphere radius

The Detection surface width and detection sphere radius is set by “HalfDetectorWidth=”. It can be adjusted. This parameter was set to 0.16 m.

References

Aylor, D. E. and F. J. Ferrendino. 1989. Dispersion of spores released from an elevated line source within a wheat canopy. Boundary-Layer Meteorol. 46: 251-273.

Flesh, T. K., and D. E. Aylor. 2000, A Lagrangian Stochastic dispersion model for assessing pesticide spray drift in an Orchard Canopy. Technical report to the U.S. Environmental Protection Agency on grant # 823627-01-1 to New Mexico State University subgrant Q00153 to the University of Connecticut.

Project Source Codes Location:

C:\phpapp\Geneflow\GeneFlow VC++ Program - 2013
_1152119226.doc

Start

Draw the

graphs by

OpenGLDraw

Map()

Set background

End

Exists simulation

results?

Y

N

Draw background by

OpenGLDrawBanner()

GDIDrawBanner()

_1152110454.doc

Start

Set new

settings

Save the current

drawing settings

End

Show the

legend values

by "Legend(rt)"

function

Restore the saved

drawing settings

Draw the

legend square

