Problem description:
(1) The generated deposition.kmz data file is not correct. First it has a size of 3kb compared with concentration.kmz of 9kb, second it can not be opened correctly using google earth.
(2) Files concentrationlegend.png, deposition.kml and depositionlegend.png does not been deleted.
Causes analysis:
The file deposition.kmz is a compressed file of depositionlegend.png and deposition.kml. However, when decompressed the deposition.kmz contains depositionlegend.png only, the file deposition.kml is not there. It is the module zipthefiles.jar that responsible for compressing depositionlegend.png and deposition.kml into deposition.kmz. After analyzing the file zipthefiles.java, I found that the files been zipped are located at the root of directory horseweed which is not true. Actually the concentration.kml is at the root of horseweed, but the deposition.kml is at the user folder rather than horseweed. That is the reason why concentration.kmz is correct but deposition.kmz is not. The reason for concentrationlegend.png, deposition.kml and depositionlegend.png have not been deleted is that the file paths are not correct.
Solutions:
To resolve the problem, the concentrationkml.jar module is modified to generate the concentration.kml file to the user folders. In addition, the concentration.kmz and deposition.kmz are all compressed uniformly from files located at the user folders. At the meantime, I used the absolute paths of files for compressing and deleting.
My work:

(1) generatekmlfile.java of concentrationkml, the file path of concentration.kml is changed to the user folder.
(2) zipthefiles.java, the files been compressed are all from user folders and absolute file paths are used rather than relative path. To get the absolute path, an exclusive class JarUtil was created to get path of designated jar files. Moreover, two threads are created for each process to consume output data from stdout and stderror.

(3) JarUtil.java, this is a new source file inclusive of class JarUtil, the class encapsulate functionality to get absolute path of specified jar files. The code is as follows:
	import java.io.UnsupportedEncodingException;
public class JarUtil
{
 private String jarName;
 private String jarPath;
 public JarUtil(Class<?> clazz) throws UnsupportedEncodingException
 {
 String path = clazz.getProtectionDomain().getCodeSource().getLocation().getPath();
 path = java.net.URLDecoder.decode(path, "UTF-8");
 java.io.File jarFile = new java.io.File(path);
 this.jarName = jarFile.getName();
 java.io.File parent = jarFile.getParentFile();
 if (parent != null)
 {
 this.jarPath = parent.getAbsolutePath();
 }
 else
 {

this.jarPath = jarFile.getAbsolutePath();
 }
 }
 /**
 * get the jar file name that the class resides in
 *
 * @return jar file name (e.g. "C:\temp\demo.jar" then return "demo.jar")
 */
 public String getJarName()
 {

return this.jarName;
 }
 /**
 * get the jar file path that the class resides in
 *
 * @return jar file path (e.g. "C:\temp\demo.jar" then return "C:\temp")
 */
 public String getJarPath()
 {
 return this.jarPath;
 }
}

(4) StreamGobbler.java, this is a new source file inclusive of class StreamGobbler which extends Thread. Class StreamGobbler is used to consume output data from stdout and stderror, the code is as follows:
	import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.OutputStream;

import java.io.PrintWriter;

public class StreamGobbler extends Thread{

 public StreamGobbler(InputStream is, String type) {

 this(is, type, null);

 }

 public StreamGobbler(InputStream is, String type, OutputStream redirect) {

 this.is = is;

 this.type = type;

 this.os = redirect;

 }

 public void run() {

 InputStreamReader isr = null;

 BufferedReader br = null;

 PrintWriter pw = null;

 try {

 if (os != null)

 pw = new PrintWriter(os);

 isr = new InputStreamReader(is);

 br = new BufferedReader(isr);

 String line=null;

 while ((line = br.readLine()) != null) {

 if (pw != null)

 pw.println(line);

 //System.out.println(type + ">" + line);

 }

 if (pw != null)

 pw.flush();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } finally{

try{

pw.close();

br.close();

isr.close();

}

catch(Exception e){}

 }

 }

 protected InputStream is;

 protected String type;

 protected OutputStream os;

}

